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Emergence of patterns in driven and in autonomous spatiotemporal systems

M. G. Cosenza, M. Pineda, and A. Parravano
Centro de Astrofı´sica Teo´rica, Facultad de Ciencias Universidad de Los Andes, Me´rida, Apartado Postal 26, Me´rida 5251, Venezuela

~Received 21 November 2002; published 27 June 2003!

The relationship between a driven extended system and an autonomous spatiotemporal system is investi-
gated in the context of coupled map lattice models. Specifically, a locally coupled map lattice subjected to an
external drive is compared to a coupled map system with similar local couplings plus a global interaction. It is
shown that, under some conditions, the emergent patterns in both systems are analogous. Based on the
knowledge of the dynamical responses of the driven lattice, we present a method that allows the prediction of
parameter values for the emergence of ordered spatiotemporal patterns in a class of coupled map systems
having local coupling and general forms of global interactions.
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The phenomenon of pattern formation induced by ex
nal forcing on spatiotemporal systems, such as chemica
actions@1–3# or granular media@4–6#, have received much
attention. Similarly, there has been a recent interest in exp
mental investigations of spontaneous pattern formation
emergence of collective behaviors in spatially extended s
tems of interacting dynamical elements, such as o
dimensional arrays of electrochemical oscillators@7#, chemi-
cal and hydrodynamical systems with global coupling@8,9#,
and populations of chaotic electrochemical cells having b
local and global interactions@10#. In this context, coupled
map lattices have provided fruitful theoretical models
studying and predicting a variety of dynamical process
including pattern formation, in spatiotemporal chaotic s
tems possessing different kinds of interaction topolog
such as local couplings, regular geometries, inhomogene
and disordered networks, and global coupling@11#.

In this paper, we investigate the relationship betwe
forced spatiotemporal systems and autonomous dynam
systems possessing both local and global interactions in
framework of coupled map lattices. We analyze the em
gence of ordered patterns in forced spatiotemporal syst
by using a model of a coupled map lattice subjected to
external drive. We show that, under some circumstances,
system is analogous to an autonomous coupled map sy
with both local and global interactions. Our approach is m
tivated by the observation that a globally coupled map s
tem behaves in a similar manner to a single map subjecte
an external drive, and that this analogy may be used to
scribe the formation of dynamical clusters in globa
coupled maps@12#.

As a model of an autonomous spatiotemporal system,
consider the following coupled map network possess
both, local and global interactions@13#:

xt11
i 5~12e2! f ~xt

i !1
e1

2
@~ f ~xt

i 11!1 f ~xt
i 21!22 f ~xt

i !#

1e2H~xt
1 ,xt

2 ,xt
3 , . . . ,xt

N!, ~1!

which can be compared to a one-dimensional coupled m
lattice subjected to a uniform external drive,
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st11
i 5~12e2! f ~st

i !1
e1

2
@~ f ~st

i 11!1 f ~st
i 21!22 f ~st

i !#

1e2Lt . ~2!

In Eq. ~1!, xt( i ) gives the state of elementi ( i
51,2, . . . ,N) at discrete timet, N is the size of the system
f (x) describes the~nonlinear! local dynamics,e1 ande2 are
the local and global coupling parameters, respectively;
H(xt

1 ,xt
2 ,xt

3 , . . . ,xt
N) is a global coupling function ofN

variables assumed to be invariant to argument permutati
that is H( . . . ,xt

i , . . . ,xt
j , . . . )5H( . . . ,xt

j , . . . ,xt
i , . . . )

; i , j . As a specific example, we shall take the usual me
field global coupling H5(1/N)( i 51

N f (xt
i), although the

analysis presented here is applicable whenever a permu
global coupling functionH appears in the autonomous sy
tem, Eq.~1!. In Eq. ~2!, st

i is the state of elementi in the
driven lattice,f (st

i) is the same local dynamics as in Eq.~1!,
e1 measures the local coupling,e2 represents the coupling
strength to the external forcing, andLt is the uniform driving
term which can be any function of time. We assume perio
boundary conditions and a quadratic mapf (x)512rx2 as
local dynamics in both Eqs.~1! and ~2!.

The analogy between an autonomous coupled map sys
having both local and global interactions and a uniform
driven lattice arises because in the former system Eq.~1! all
the elements in the network are affected by the global c
pling in exactly the same way at any time, and, therefore,
behavior of any mapxt

i in Eq. ~1! is equivalent to the behav
ior of any element in the driven lattice@Eq. ~2!# with Lt

5H and initial conditionsso
i 5xo

i . Additionally, if the au-
tonomous coupled map system in Eq.~1! reaches an ordere
spatiotemporal pattern, its corresponding global coupl
function H follows an ordered motion. Thus, the associat
driven lattice, Eq.~2!, subjected to a periodic forcingLt
should exhibit an ordered spatial pattern similar to that of
coupled map system having both local and global inter
tions. In particular, periodic drives resulting in periodic pa
terns in the driven lattice Eq.~2! may be employed to predic
the emergence of periodic patterns in autonomous syst
described by Eq.~1!, regardless of the specific functiona
form of the permutable global couplingH and without doing
©2003 The American Physical Society17-1
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direct simulations on the autonomous system.
An ordered spatiotemporal pattern having wavelengtk

and periodp emerging in a periodically driven lattice can b
characterized by thek3p matrix

S~k,p!5S s1
1 . . . s1

k

A � A

sp
1 . . . sp

kD , ~3!

where themth column contains the consecutivep values of
the asymptotic periodic response of an elementm belonging
to a spatial wavelength, (m51,2, . . . ,k), and thenth row
displays the values of all thek elements in a wavelength~a
snapshot! at the cyclic time stepn for n51,2, . . . ,p. The
driven lattice may reach different asymptotic ordered s
tiotemporal patternsS(k,p) depending on the initial condi
tions, i.e., multistability is possible.

Once a patternS(k,p) appears in the periodically drive
lattice for some values of the parameters, it must satisfy
following set ofk3p nonlinear algebraic equations:

sn11
m 5~12e12e2! f ~sn

m!1
e1

2
@~ f ~sn

m11!1 f ~sn
m21!#

1e2Ln , ~4!

where $Ln : n51,2, . . . ,T% denotes the sequence of valu
adopted by the drive of periodT. In general, for emergen
periodic patterns, the ratiop/T5n is a natural number tha
characterizes the resonance between the period of the dr
term and the resulting period of the lattice. Thus, the
quence of values$L1 ,L2 , . . . ,LT% repeat themselvesn times
in the right hand side of Eqs.~4!. In addition, the presence o
symmetries in a spatiotemporal pattern may reduce the n
ber of independent variables in the above set of equati
Equations~4! may yield several sets of solutions for the o
bits sn

m , however only the stable ones will be observed
asymptotic patterns in the driven lattice. As examples, c
sider the following patterns in the driven lattice, charact
ized by the given matrix and satisfying the indicated re
tions, corresponding to Eqs.~4!:

~i! Frozen (p51) wavelengthk52, with constant drive
Lt5$L1%,

S~2,1!5~ab!; ~5!

a5~12e12e2! f ~a!1e1f ~b!1e2L1 ,

b5~12e12e2! f ~b!1e1f ~a!1e2L1 . ~6!

~ii ! Out of phase, wavelengthk52 and periodp52, with
constant drive$L1%,

S~2,2!5S a b

b aD ; ~7!

a5~12e12e2! f ~b!1e1f ~a!1e2L1 ,

b5~12e12e2! f ~a!1e1f ~b!1e2L1 . ~8!
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~iii ! Wavelengthk52 and periodp54, with period-two
drive $L1 ,L2%,

S~2,4!5S a b

c d

b a

d c

D ; ~9!

c5~12e12e2! f ~a!1e1f ~b!1e2L1 ,

d5~12e12e2! f ~b!1e1f ~a!1e2L1 ,

a5~12e12e2! f ~d!1e1f ~c!1e2L2 , ~10!

b5~12e12e2! f ~c!1e1f ~d!1e2L2 .

~iv! Wavelengthk53 and periodp53, with constant
drive $L1%,

S~3,3!5S a b c

b c a

c a b
D ; ~11!

a5~12e12e2! f ~c!1
e1

2
@ f ~b!1 f ~a!#1e2L1 ,

b5~12e12e2! f ~a!1
e1

2
@ f ~c!1 f ~b!#1e2L1 , ~12!

c5~12e12e2! f ~b!1
e1

2
@ f ~a!1 f ~c!#1e2L1 .

For the above examples, the orbitsa,b,c,d can be ob-
tained as functions of the parameterse1 ,e2 ,r , and the values
L1 andL2.

In practice, if we are searching for the orbitssn
m in a

specific stable patternS(k,p), we can construct a bifurcation
diagram of a periodically driven lattice ofN coupled maps
(N multiple of k) as a function of some parameter of th
system, and look for windows where this pattern appear
the diagram. This may require exploring for appropriate i
tial conditions. Figures 1~a!–1~d! show bifurcation diagrams
of driven lattices as a function of eithere1 or e2, where the
patterns given in examples~i!–~iv!, in addition to other spa-
tiotemporal states, arise. Figure 1~a! shows the bifurcation
diagram of a lattice subjected to a constant driveL150.39 as
a function of the coupling parameter of the drivee2, with
fixed local couplinge150.54. Ase2 is varied, the steadily
driven system exhibits several spatiotemporal states, suc
synchronization ~both chaotic and periodic!, a pattern
S(2,1), and quasiperiodick52 wavelength. The stationar
orbits a and b ~for either the odd or even elements of th
lattice! in the patternS(2,1) arise in the bifurcation diagram
of Fig. 1~a! as functions of the parametere2. The values of
the instantaneous mean field of the wavelength in each
ternS(k,p), given by^ f &n5(1/k)(m51

k f (sn
m), are also plot-

ted in the corresponding regions of the bifurcation diagram
7-2
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FIG. 1. Bifurcation diagrams of the orbitsst
i of the driven lattice@Eq. ~2!# with sizeN530 and fixed local parameterr 52. The values

of the periodic driveLt are shown with dashed lines. Orbits (a),(b),(c),(d), corresponding to patternsS(k,p) of examples~i!–~iv! are
indicated. The mean̂f &n is drawn with thick lines in each region where a patternS(k,p) appears. Regions where synchronization occurs
identified; regions of quasiperiodic behavior are labeled QP, and those of spatiotemporal chaos are labeled STC.~a! e150.54 and constant
drive L150.39; bifurcation parameter ise2. ~b! e150.05, L150.36; bifurcation parametere2. ~c! e150.54, and period-two driveL1

50.77,L250.22; bifurcation parametere2. ~d! e250.065; L150.08; bifurcation parameter ise1.
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In the case of Fig. 1~a!, we get^ f &5@ f (a)1 f (b)#/2, inde-
pendent of time, on the regionS(2,1). Note that ate2
50.56, the mean field̂f & is equal to the value of the driv
L150.39 in Fig. 1~a!. Since^ f & also corresponds to the mea
field of the entire lattice, it may be inferred that for the va
ues of the parametersr 52, e150.54, ande250.56, an au-
tonomous coupled system described by Eq.~1! with mean
field global coupling may also exhibit a spatiotemporal fr
zen pattern withk52 andp51, while sustaining a constan
value of its global coupling function atH50.39. For those
parameter values, the driven lattice, Eq.~2!, and the autono-
mous system, Eq.~1!, are equivalent. Note that this predi
tion is being made without direct numerical simulation
the autonomous spatiotemporal system. Moreover, the in
section of^ f & with a constant value ofL1 in the diagram of
the driven lattice in Fig. 1~a! readily provides a set of initia
conditions for the odd and even elementsxt

i in Eq. ~1! for
observing the spatiotemporal patternS(2,1) in the autono-
mous coupled system at the parameter valuese15054, e2

50.56, andr 52; that is,xt
i5a50.017 for i even; andxt

i

06621
-
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5b50.776 fori odd. Similar predictions of parameter value
and initial conditions for the emergence of the spatiotem
ral patternsS(2,2), S(2,4), andS(3,3) of examples~ii !–~iv!
in the autonomous system, Eq.~1!, can be made from the
intersections of the curveŝf &n with the values ofLt in the
diagrams of the periodically driven lattices of Fig. 1~b!–1~d!,
respectively. Figures 2~a!–~d! display the spatiotemporal pa
ternsS(k,p) of examples~i!–~iv! which emerge in the au
tonomous system, Eq.~1!, while sustaining either a constan
or a periodic mean field coupling function, at parameter v
ues and orbits predicted from the analogy with the driv
coupled map lattice.

These results suggest that a spatiotemporal patternS(k,p)
appearing in a lattice driven with periodT @Eq. ~2!# can also
emerge in an autonomous system@Eq. ~1!# when the follow-
ing conditions are satisfied:

~13!
7-3
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FIG. 2. Spatiotemporal patterns on a gray scale in the autonomous system@Eq. ~1!# with global mean field interactionH, at parameter
values predicted from the analogy with the driven lattice in Fig. 1. SizeN530; spatial index ofxt

i runs horizontally and time runs from
bottom to top.~a! PatternS(2,1); r 52, e150.54, e250.56; constantH50.39. ~b! PatternS(2,2); r 52, e150.05, e250.2; constantH
50.36. ~c! PatternS(2,4); r 52, e150.54, e250.51; H oscillates periodically between the values 0.77 and 0.22.~d! PatternS(3,3); r
52, e150.001,e250.065; constantH50.08.
ve
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wheren51, . . . ,T; and where the arguments ofH are thek
elements in thenth row of the matrixS(k,p), repeatedN/k
times. For convenience, we denote the right hand side
Eqs.~13! by H(sn

m). For given parametersr ,e1,ande2, the
orbits sn

m of the driven lattice depend on the periodic dri
Lt5$L1 ,L2 , . . . ,LT%, according to Eq.~4!. Thus, Eqs.~13!
06621
of

constitute a set ofT nonlinear equations for the value
$L1 ,L2 , . . . ,LT%. The solutionsLt* 5$L1* ,L2* , . . . ,LT* % of
Eqs.~13! predict that the autonomous system@Eq. ~1!# with
local and global interactions possesses a state characte
by the spatiotemporal patternS(k,p) with orbits xn

m

5sn
m(Lt* ), and by the periodic global coupling function mo
7-4
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tion H5L1* ,H5L2* , . . . ,H5LT* . As an illustration, con-
sider the patternS(2,1) whose orbitsa(r ,e1 ,e2 ,L1) and
b(r ,e1 ,e2 ,L1) can be obtained from Eqs.~6!. Then, Eqs.
~13! reduce to just one equation, which in the case of a m
field coupling functionH5(1/N)( i

Nf (xt
i), yields the solu-

tion

L1* 5
1

2r ~e212e121!
. ~14!

Thus, for the set of parameters satisfying the above relat
the patternS(2,1) can emerge in both, a steadily driven la
tice with Lt5$L1* % and an autonomous system sustaining
constant mean field couplingH5L1* .

Figure 3 displays the functionH(sn
m) corresponding to

mean field coupling as a function of the constant driveL1 for
the patterns of examples~i!, ~ii !, and ~iv!. The intersections
of the curves with the diagonal give the solutionsL1* to Eq.
~13! for each pattern indicated. Note that Eqs.~13! can be
used to predict if a given patternS(k,p) observed in the
driven lattice may emerge in diverse autonomous syst
possessing different functional forms of the global coupl
functionH. For instance, one may ask if the patternS(2,2) of
example~ii ! can also exist in an autonomous system, Eq.~1!,
with a constant value of a global coupling function given

FIG. 3. Global coupling functionsH(sn
m) @right hand side of Eq.

~13!#, associated to patternsS(k,p) with constant drive, as a func
tion of L1. Continuous curves correspond to mean field global c
pling with the parameters of Fig. 2 in each case. The dash-do
curve displays a geometric mean global coupling function ass
ated to the patternS(2,2) with parametersr 52,e150.005,e2

50.4; the intersection occurs atL1* 50.3418.
,

06621
n

n,

a

s

the geometric mean,H5) i
Nuxt

i u1/N. Figure 3 showsH(sn
m)

for this form of global coupling associated to the patte
S(2,2) ~slash-dotted curve! as a function ofL1, giving a
solution L1* 5H50.3418 at the intersection with the diago
nal. This prediction has been verified by simulations on t
autonomous system.

Note, however, that a given patternS(k,p) emerging in a
periodically forced lattice may not be observed in an auto
mous system that satisfies Eqs.~13!. In addition to being
predicted by the solutions to the set of equations, the
served pattern in the autonomous system must be sta
which implies some stability conditions related to the var
tion of H(sn

m) as a function of the drive$Ln% at the values of
the solutions$L* %. In general, the conditions for stability o
patterns in the driven or in the autonomous system are
ferent. A detailed analysis of these conditions is a subjec
our ongoing research.

In summary, we have studied the emergence of indu
ordered patterns in forced spatiotemporal systems by usi
model of a one-dimensional coupled map lattice subjecte
an external drive. Under some circumstances, the emer
patterns on this system are analogous to those of an aut
mous coupled map system possessing a similar local c
pling and an additional global interaction that acts as a glo
feedback. Thus, by exploring the dynamical responses
driven spatiotemporal system, one can get an insight into
conditions for the emergence of specific patterns in a clas
autonomous spatiotemporal systems. Once an ordered
ternS(k,p) appears in a driven lattice for some values of t
parameters, the same pattern is expected to arise in a fa
of related autonomous coupled map systems that satisfy
~13!, which constitute the link between both systems. Co
versely, a pattern observed in an autonomous system
both local and global interactions should also exist in
associated driven system with similar local couplings
some appropriate period of the external drive. The meth
has been applied to some simple cases; however it ca
used for more complex patterns. Although we have cons
ered one-dimensional diffusive local couplings, the analo
between a uniform external drive and a global interaction
be applied to any network of coupled maps. The relat
between extended systems subjected to nonuniform driv
fields and spatiotemporal autonomous systems is an inte
ing problem for future research.

This work was supported by Consejo de Desarrollo Ci
tı́fico, Humanı´stico y Tecnolo´gico of Universidad de Los
Andes, Mérida, Venezuela.
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