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Emergence of patterns in driven and in autonomous spatiotemporal systems
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The relationship between a driven extended system and an autonomous spatiotemporal system is investi-
gated in the context of coupled map lattice models. Specifically, a locally coupled map lattice subjected to an
external drive is compared to a coupled map system with similar local couplings plus a global interaction. It is
shown that, under some conditions, the emergent patterns in both systems are analogous. Based on the
knowledge of the dynamical responses of the driven lattice, we present a method that allows the prediction of
parameter values for the emergence of ordered spatiotemporal patterns in a class of coupled map systems
having local coupling and general forms of global interactions.
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The phenomenon of pattern formation induced by exter- - _ o _
nal forcing on spatiotemporal systems, such as chemical re- Si+1=(1—€)f(sp)+ E[(f(S{H)ﬁLf(St H—2f(sy]
actions[1-3] or granular medig4—6], have received much
attention. Similarly, there has been a recent interest in experi- + 6L . 2
mental investigations of spontaneous pattern formation and
emergence of collective behaviors in spatially extended SE Eq. (1), x(i) gives the state of element (i
tems of interacting dynamical elements, such as one_, , ' N,) attdiscrete time, N is the size of the system
dimensional arrays of electrochemical oscillatofg chemi- f(x)’ c’jéééribes thénonlineay Ic')cal dvnamicse. ande. are '
cal and hydrodynamical systems with global coupli8g], Y F1 €2

and populations of chaotic electrochemical cells having botrﬁ?xlloigl ;nd glof,%l ?S()U;I;gbg?ri;nue;ﬁ;z ;ﬁgggﬂvix; and
ISR S SRR A ¢

local and global interactiongl0]. In this context, coupled ) . . .
map lattices have provided fruitful theoretical models forvarlal_ales assumied 0 b? Invariant to argujment piermutatlons,
studying and predicting a variety of dynamical processesiN@t 1S HC....xi, ...xg, . )=H( o X, o)
including pattern formation, in spatiotemporal chaotic sys-? I:J- AS & specific example, WeNshaII itake the usual mean
tems possessing different kinds of interaction topologiesfield global coupling H=(1/N)>i,f(x;), although the
such as local couplings, regular geometries, inhomogeneo@alysis presented here is applicable whenever a permutable
and disordered networks, and global coupliag]. global coupling functiorH appears in the autonomous sys-

In this paper, we investigate the relationship betweeriem, Ed.(1). In Eq. (2), s, is the state of elemeritin the
forced spatiotemporal systems and autonomous dynamicériven lattice,f(s;) is the same local dynamics as in Eij),
systems possessing both local and global interactions in the, measures the local coupling, represents the coupling
framework of coupled map lattices. We analyze the emerstrength to the external forcing, ahgis the uniform driving
gence of ordered patterns in forced spatiotemporal systenterm which can be any function of time. We assume periodic
by using a model of a coupled map lattice subjected to amoundary conditions and a quadratic mi)=1—rx? as
external drive. We show that, under some circumstances, thiscal dynamics in both Eqg1) and(2).
system is analogous to an autonomous coupled map system The analogy between an autonomous coupled map system
with both local and global interactions. Our approach is mo-having both local and global interactions and a uniformly
tivated by the observation that a globally coupled map sysériven lattice arises because in the former system(Bcgll
tem behaves in a similar manner to a single map subjected the elements in the network are affected by the global cou-
an external drive, and that this analogy may be used to desling in exactly the same way at any time, and, therefore, the
scribe the formation of dynamical clusters in globally behavior of any map; in Eq. (1) is equivalent to the behav-
coupled map$12]. ior of any element in the driven latticEEq. (2)] with L,

As a model of an autonomous spatiotemporal system, we-H and initial conditionss)=x;. Additionally, if the au-
consider the following coupled map network possessingonomous coupled map system in Ef) reaches an ordered
both, local and global interactior&3]: spatiotemporal pattern, its corresponding global coupling

function H follows an ordered motion. Thus, the associated
6 driven lattice, EqQ.(2), subjected to a periodic forcing;
X =(1— ) F(X) + —[(F(X Y+ F(xi ™1 — 2 (x})] should exhibit an ordered spatial pattern similar to that of the
t+1 2 t 2 t t t - )
coupled map system having both local and global interac-
X{\l)’ (1) tions. In particular, periodic drives resulting in periodic pat-
terns in the driven lattice Eq2) may be employed to predict
the emergence of periodic patterns in autonomous systems
which can be compared to a one-dimensional coupled magescribed by Eq(1), regardless of the specific functional
lattice subjected to a uniform external drive, form of the permutable global couplirtd and without doing

+eH(XE X2 X3, ...,
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direct simulations on the autonomous system. (iii) Wavelengthk=2 and periodp=4, with period-two
An ordered spatiotemporal pattern having wavelerigth drive {L,,L,},
and periodp emerging in a periodically driven lattice can be

characterized by thkX p matrix a b
1 k 5 c d
g P g 4) = .
.1 . ‘1 S(2,4) b al’ 9
S(k,p)=1| - D 3 d ¢
c=(l-e;—ey)f(a)+e,f(b)+e,lq,
where themth column contains the consecutipevalues of
the asymptotic periodic response of an elenmaritelonging d=(1-€;—€)f(b)+ €1 f(a)+ el s,
to a spatial wavelength,n{=1,2, ... k), and thenth row
displays the values of all thieelements in a wavelengtta a=(1l-e€;—€e)f(d)+erf(c)+el,, (10)
shapshot at the cyclic time stem for n=1,2,... p. The
driven lattice may reach different asymptotic ordered spa- b=(1-e;—€)f(c)+erf(d)+el,.

tiotemporal pattern§(k,p) depending on the initial condi-

tions, i.e., multistability is possible. (iv) Wavelengthk=3 and periodp=3, with constant

Once a patterrs(k,p) appears in the periodically driven drive {L.},
lattice for some values of the parameters, it must satisfy the a b ¢
following set ofk X p nonlinear algebraic equations:

S(33=(b c al; (12
€
o 1= (1= e e)f (o) +5 (ol )+ (ol )] cakb
€
+eln, (4) a:(l—el—ez)f(c)Jr%[f(b)+f(a)]+ele,

where{L,: n=1,2,... T} denotes the sequence of values
adopted by the drive of period. In general, for emergent
periodic patterns, the ratip/ T=v is a natural number that
characterizes the resonance between the period of the driving
term and the resulting period of the lattice. Thus, the se- €
quence of valuebL;,L,, ... L1} repeat themselvestimes c=(1-e—e)f(b)+ S[f(aA)+1(C)]+ el

in the right hand side of Eq$4). In addition, the presence of

symmetries in a spatiotemporal pattern may reduce the nUm- £qr the above examples, the orbidsb,c,d can be ob-

ber of_ independent_ variables in the above set of equationgsined as functions of the parameterse,,r, and the values
Equations(4) may yield several sets of solutions for the or- L, andL,.

bits o', however only the stable ones will be observed as ™|, practice, if we are searching for the orbitd" in a

asymptotic patterns in the driven lattice. As examples, congpecific stable patter@(k,p), we can construct a bifurcation
sider the following patterns in the driven lattice, character-diagram of a periodically driven lattice ™ coupled maps

b=(1—-€;—€y)f(a)+ %[f(c)+f(b)]+62L1, (12

ized by the given matrix and satisfying the indicated rela-(N multiple of k) as a function of some parameter of the

tions, corresponding to Eq&):
(i) Frozen p=1) wavelengthk=2, with constant drive

Le={La},
S(2,1)=(ab); 5
a=(1—e;— ) f(a)+erf(b)+ el s,
b=(1—e;— €)f(b)+erf(a)+ &5l ;. (6)

(i) Out of phase, wavelength=2 and periodp=2, with
constant drive[L,},

a
b

_( b,
S(2,2)= al’ (7)
a=(l—e;—ey)f(b)+ef(a)+elq,

b=(1l-€;—€)f(a)+ e, f(b)+ el . (8)

system, and look for windows where this pattern appears in
the diagram. This may require exploring for appropriate ini-
tial conditions. Figures (®)—1(d) show bifurcation diagrams

of driven lattices as a function of eithef or e,, where the
patterns given in exampldg—(iv), in addition to other spa-
tiotemporal states, arise. Figuréall shows the bifurcation
diagram of a lattice subjected to a constant dtiye=0.39 as

a function of the coupling parameter of the drieg with
fixed local couplinge;=0.54. Ase, is varied, the steadily
driven system exhibits several spatiotemporal states, such as
synchronization (both chaotic and periodic a pattern
S(2,1), and quasiperiodik=2 wavelength. The stationary
orbits a and b (for either the odd or even elements of the
lattice) in the patternS(2,1) arise in the bifurcation diagram

of Fig. 1(a) as functions of the parametey. The values of

the instantaneous mean field of the wavelength in each pat-
ternS(k,p), given by(f),=(1/k)=K_,f(cM), are also plot-

ted in the corresponding regions of the bifurcation diagrams.
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FIG. 1. Bifurcation diagrams of the orbis%. of the driven latticd Eq. (2)] with sizeN=30 and fixed local parameter=2. The values
of the periodic drivelL,; are shown with dashed lines. Orbita)((b),(c),(d), corresponding to patterrii(k,p) of examples(i)—(iv) are
indicated. The mea(t ), is drawn with thick lines in each region where a patt8(Rk, p) appears. Regions where synchronization occurs are
identified; regions of quasiperiodic behavior are labeled QP, and those of spatiotemporal chaos are labdl@de$¥0.54 and constant
drive L;=0.39; bifurcation parameter is,. (b) €,=0.05, L;=0.36; bifurcation paramete¢,. (c) €;=0.54, and period-two drive ;
=0.77L,=0.22; bifurcation parametes,. (d) €,=0.065;L,;=0.08; bifurcation parameter is;.

In the case of Fig. &), we get(f)=[f(a)+f(b)]/2, inde- =b=0.776 fori odd. Similar predictions of parameter values
pendent of time, on th? regio(2,1). Note that ate;  and initial conditions for the emergence of the spatiotempo-
=0.56, the mean flel«?f> is equal to the value of the drive ral patternsS(2,2), S(2,4), andS(3,3) of examplesii)—(iv)
L,=0.39in Fig. 1a). Since(f) also corresponds to the mean in the autonomous system, E€), can be made from the
field of the entire lattice, it may be inferred that for the val- jhtersections of the curved), with the values ofL, in the
ues of the parameters=2, €;=0.54, ande,=0.56, an au-  giagrams of the periodically driven lattices of Figbj-1(d),
tonomous coupled system described by EQ.with mean  reqpectively. Figures(d)—(d) display the spatiotemporal pat-
field global cquplmg may also exh|b|t a spa.tlotemporal fro'terns S(k,p) of examples(i)—(iv) which emerge in the au-
zeln pat]Ee_rn Wl'tg(:Iz anﬁi_p:]il, while ;l;s_t%lr;gg g corr:stant tonomous system, E@1), while sustaining either a constant
value Ot Its glo a E:)upc)jl_ng uln;:tt_mn o q ih or tt 0S€  ora periodic mean field coupling function, at parameter val-
parameter values, the driven fattice, K2), an € autono- a5 and orbits predicted from the analogy with the driven
mous system, Eq.l), are equivalent. Note that this predic- coupled map lattice

tion is being made without direct numerical simulation on These results suggest that a spatiotemporal paBg«p)
the autonomous spatiotemporal system. Moreover, the 'ntegppearing in a lattice driven with periad[Eq. (2)] can also

section of(f) with a constant value df, in the diagram of emerge in an autonomous systEEg. (1)] when the follow-

the driven lattice in Fig. (8) readily provides a set of initial ing conditions are satisfied:

conditions for the odd and even elemertsin Eq. (1) for
observing the spatiotemporal patte®(2,1) in the autono-

— 1 2 k
mous coupled system at the parameter valkies054, €, La=H( .o s 00: s 30 )
=0.56, andr=2; that is,x;=a=0.017 fori even; andx; Nk times (13
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FIG. 2. Spatiotemporal patterns on a gray scale in the autonomous siiste)] with global mean field interactiohl, at parameter
values predicted from the analogy with the driven lattice in Fig. 1. 8ize30; spatial index ok; runs horizontally and time runs from
bottom to top.(a) PatternS(2,1); r=2, €,=0.54, €,=0.56; constant=0.39. (b) PatternS(2,2); r=2, €;=0.05, €,=0.2; constant
=0.36. (c) PatternS(2,4); r=2, €,=0.54, €,=0.51; H oscillates periodically between the values 0.77 and 0(@pPatternS(3,3); r
=2, €,=0.001, e,=0.065; constanH =0.08.

wheren=1, ... T; and where the arguments Hfare thek  constitute a set ofl nonlinear equations for the values
elements in theath row of the matrixS(k,p), repeatedN/k  {L,,L,, ... L¢}. The solutionsLy ={LY ,L3, ... L3} of
times. For convenience, we denote the right hand side ofgs.(13) predict that the autonomous systéky. (1)] with
Egs.(13) by H(o)). For given parametense;,ande,, the  local and global interactions possesses a state characterized
orbits o' of the driven lattice depend on the periodic drive by the spatiotemporal patter®(k,p) with orbits x;'
L={Lq,L,, ... L7}, according to Eq(4). Thus, Eqs(13) =op'(L{), and by the periodic global coupling function mo-
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' ' ' ' ' ' ' T~ the geometric mearH =TIIN|x{|*N. Figure 3 showsH (o™
04| e SGD) < for this form of global coupling associated to the pattern
5@.2) S~ 7 | S(2,2) (slash-dotted curyeas a function ofL,, giving a
27T~ e solutionL} =H=0.3418 at the intersection with the diago-
03 P N nal. This prediction has been verified by simulations on this
H(e} - | autonomous system.
0zl R | Note, however, that a given patteBik,p) emerging in a
| Pid periodically forced lattice may not be observed in an autono-
Pid 1 mous system that satisfies Eq43). In addition to being
il i predicted by the solutions to the set of equations, the ob-
7—@12,3)\‘\_ served pattern in the autonomous system must be stable,
7 1 which implies some stability conditions related to the varia-
o . ! . ! . ! . ! tion of H(o]) as a function of the drivéL ,} at the values of
the solutiongL, }. In general, the conditions for stability of
1 patterns in the driven or in the autonomous system are dif-
ferent. A detailed analysis of these conditions is a subject of

FIG. 3. Global coupling functionsl (o) [right hand side of Eq.

(13)], associated to patterr&k,p) with constant drive, as a func- ou:nogg%r;?a:ese:gcﬁé e studied the emergence of induced
tion of L;. Continuous curves correspond to mean field global cou- u Y, W Vv udi 9 inau

pling with the parameters of Fig. 2 in each case. The dash-dotteardered patterns in forced spatiotemporal systems by using a

curve displays a geometric mean global coupling function associ[nOdel of a ong-dlmensmnal COUD,led map lattice subjected'to
ated to the patternS(2,2) with parameters =2,,=0.005¢, an external drive. Under some circumstances, the emerging

=0.4; the intersection occurs at = 0.3418. patterns on this system are analogous to those of an autono-
mous coupled map system possessing a similar local cou-
tion H=LY} ,H=L3,... H=LT. As an illustration, con- pling and an additional global interaction that acts as a global

sider the patterr5(2,1) whose orbitsa(r,e;,€;,L,) and  feedback. Thus, by exploring the dynamical responses of a
b(r,e;1,€,,L4) can be obtained from Eq$6). Then, Egs. driven spatiotemporal system, one can get an insight into the
(13) reduce to just one equation, which in the case of a meagonditions for the emergence of specific patterns in a class of
field coupling functionH=(1/N)={'f(x), yields the solu-  autonomous spatiotemporal systems. Once an ordered pat-
tion ternS(k,p) appears in a driven lattice for some values of the
1 parameters, the same pattern is expected to arise in a family
L= (14) of related autonomous coupled map systems that satisfy Egs.
2r(e;+2e,-1) (13), which constitute the link between both systems. Con-

Thus, for the set of parameters satisfying the above relatior€Sely; & pattern observed in an autonomous system with
the patternS(2,1) can emerge in both, a steadily driven lat- both local and global interactions should also exist in an

tice with L,={L*} and an autonomous system sustaining aassomated driven system with similar local couplings for

constant mean field couplirig =L* some appropriate period of the external drive. The method
Figure 3 displays thepfunctioéikam) corresponding to has been applied to some simple cases; however it can be

. . : n . used for more complex patterns. Although we have consid-

mhean field COL:CpI'ng asla.fun_clztmn %ft.he grohnspantdh\iefor ered one-dimensional diffusive local couplings, the analogy

:)feth%ags:czsowi?ﬁhmep;(igégrl])e;l ag?vé“t/rzé SOTUL?(;%S;CE'%HS between a uniform external drive and a global interaction can

e be applied to any network of coupled maps. The relation
(13) for each pattern indicated. Note that E¢83) can be  penyveen extended systems subjected to nonuniform driving
used to predict if a given patter8(k,p) observed in the

> ! Jatle fields and spatiotemporal autonomous systems is an interest-
driven lattice may emerge in diverse autonomous system§Ig problem for future research.

possessing different functional forms of the global coupling

functionH. For instance, one may ask if the patt&(2,2) of This work was supported by Consejo de Desarrollo Cien-
example(ii) can also exist in an autonomous system, @y.  tifico, Humanstico y Tecnolgico of Universidad de Los
with a constant value of a global coupling function given by Andes, Meida, Venezuela.
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